
PREPRINT of the article in Communications in Nonlinear Science and Numerical Simulation (2017) 

http://dx.doi.org/10.1016/j.cnsns.2017.01.029  

Attitude dynamics of gyrostat–satellites under control by magnetic 

actuators at small perturbations 
 

 ANTON V. DOROSHIN 

Space Engineering Department 

Samara National Research University  

 

Moskovskoe shosse 34, Samara, Russian Federation 443086 

doran@inbox.ru;   doroshin@ssau.ru  
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  Introduction 

 

The problem of the dynamics analysis of the spacecraft with complex mechanical structure with 

rotating parts/bodies/equipment (dual-spin spacecraft, multi-spin spacecraft, gyrostat-satellites) and 

various actuators of control systems always was one of the important part of mechanics and flight 

dynamics. This problem can be decomposed on many important tasks, starting from the fundamental 

tasks of classical mechanics of rigid bodies systems [1-5], continuing with new developments in this 

area [6-8], and focusing on the application of the fundamental results to the analysis of the non-linear 

regular and chaotic dynamics [9-28] of spacecraft (SC).  

The motion of the spacecraft with magnetic control systems was observed and studied in many 

works in different tasks’ formulations [11-28]. In general, the magnetic control technique is based on 

the interaction of the external magnetic field (the Earth magnetic field, e.g.) and own spacecraft 

magnetic dipole moment m, which is formed by magnetic actuators (magnetic coils and/or rods); and 

corresponding control lows follow from the controller programs, which generate the concrete time-

dependencies of magnetic torque components relatively the connected SC’s coordinates frame. These 

time-dependencies for the components of the SC magnetic dipole moments can have elementary simple 

or, in contrary, complex shapes. For example, to solve the task of SC attitude stabilization along the 

local direction of the induction vector of the external magnetic field, we can use the simplest form of 

the SC own magnetic dipole moment with constant components relatively the connected coordinates 

frame. Or, in the purposes of decreasing the value of the angular momentum of the SC, the well-known 

“B-dot” maneuver can be fulfilled [27, 28], when the components of the own SC magnetic dipole 

moment are formed by the control system with the help of the SC magnetometers: the magnetometers 

measure derivatives of values of projections of the induction of the external magnetic filed in the SC 

connected frame, and the control system form the dipole moment components proportionally (but with 

the opposite sign) to these measured values. So, many cases of the shape of own SC magnetic dipole 

moment are applicable in the task of the magnetic attitude control, and, moreover, it is possible to 

indicate the generically defined control as the following low [16]: 
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     2( , ) p vk k    m m q ω q Iω  

 

where kp, kv, ε are control constants; q – is the vector of SC attitude parameters (connected with 

angles/quaternions); I – is the SC inertia tensor; ω – is the angular velocity vector of the SC.  

The aim of this research is to obtain analytical solutions for the attitude dynamics of the gyrostat-

satellite (GS) with magnetic control, and to investigate chaotic regimes in the dynamics at the presence 

of small perturbations. In the paper we consider the motion of the three-axial GS with the dynamically 

symmetrical rotor under control by magnetic actuators that create own GS magnetic dipole moment 

proportional to the angular velocity of the GS main body 

 

  km ω ω  

 

and, therefore, this dynamical regime can be defined as “the omega-maneuver”.  

The main motivation of the indicated above subject matter is to prepare the adequate 

fundamental basis for further developing control systems based on the magnetic torque. Moreover, as 

the part of this general problem, it is important to find partial simplified techniques of using this 

magnetic control in cases of small simple spacecraft/satellites with limited sets of equipment, e.g. in the 

cases of micro-/nano-satellites [28, 29, 32, 33, 34]. 

As it is assumed in most important works in this field, the main system model represents the 

rigid body rotating around the fixed point under the action of the restoring torque, that is quite close to 

the classical tasks of the heavy top motion (in the Euler case, the Lagrange case, and in the case of 

Kovalevskaya) and the gyrostat motion. By the same way, in this work is considered the SC, which 

consists from the main rigid body with the rotator (the second rotor-body), and the “fixed point” is 

correspond to the SC center of mass (realizing its orbital motion at the independent trajectory motion), 

but the restoring torque is formed by the interaction between the external geomagnetic field and own 

internal magnetic induction of the SC (as the well-known compass effect). So, the main state space and 

the main dynamical parameters include, firstly, dynamical and kinematical parameters containing 

components of the SC angular velocity and directional cosines of the external magnetic induction vector 

(these cosines also can be expressed through the Euler angles), and, secondly, the Serret-Andoyer-

Deprit canonical coordinates. The first class of the dynamical parameters is appropriate for the angular 

motion obvious description, and the second class is usually used in the framework of studying the 

perturbed dynamics of Hamiltonian systems and the chaotic aspects description. 

 

 

1. Mechanical and mathematical models 

 

Let us consider the GS motion at the fulfilment of two conditions. The first condition defines 

the smallness of the magnetic moment creation, which does not essentially change the vector of the GS 

angular momentum. The second condition requires the coincidence of the direction of the GS angular 

momentum vector with the direction of the induction vector of the external magnetic field. The first 

condition corresponds to the consideration of the weakly perturbed motion. The second condition can 

be interpreted as the quite possible circumstance of the GS motion, when its center of mass is located 

in the appropriate orbital segment with the suitable direction of the magnetic induction vector (fig.1) – 

as the part of such possible cases, the cylindrical precession regime can be indicated.  The cylindrical 

precession regime is realized when the magnetized GS performs an orbital motion on a circular 

equatorial orbit of the Earth with the angular momentum of the GS is directed perpendicularly to the 

orbit’s plane [9, 11]. Also such motion is very important for the realization of space missions with the 
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gyroscopically stabilized stationary attitude motions of the GS with the conservation of the spatial 

orientation of its longitudinal axes (especially it is important for communication satellites).  

        
(a)                                                                      (b) 

Fig.1 – The model of the Earth’s magnetic field and its induction vector Borb: 

(a) – the glide of vectors along the SC1 orbit; (b) – the main inertial coordinates frame CXYZ at the the coincidens of the 

angular momentum K with the Borb direction on the orbit segment OO’ 

As it is well known, the SC magnetic actuators create the magnetic dipole moment (m), which 

interacts with the external magnetic field (with the magnetic induction vector Borb) and produce the 

control torque: 

 

ctrl orb M m B       (1.1) 

 

 Let us consider the vector of the external magnetic field induction Borb as the constant in the 

inertial space vector. The constancy of the vector Borb will be quite applicable at the short sector of the 

orbital SC motion (fig.1). 

 As it was described above, the own SC magnetic dipole moment can be formed in different 

complex shapes. In this work we will consider the shape of m defining the proportionality with the 

vector ω of the angular velocity of the main SC body: 

 

, constk k m ω      (1.2) 

 

where in the connected SC coordinates frame Cxyz (fig.2) the vector of the angular velocity has the 

following components: ω = [p, q, r]T. We can call the motion regime of the SC under control (1.2) when 

the components of own magnetic dipole moment of the SC are modulated by the control system 

proportionally to the components of the SC angular velocity vector ω (1.2) as “the omega-maneuver”.  

 

                                                 
1 The constructional scheme of the SC (GS) depicted at the fig.1 and fig.2 is based on the Multi-Mission Nanosat architecture which was taken from [29]. 
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Fig.2 – The GS schematic construction and coordinates systems 

The main coordinates frames are depicted at the figure (fig.2), including the inertial frame CXYZ and 

the frame Cxyz connected with the main body of SC. The inertial axis CZ coincides with the constant 

direction of the vector of the magnetic induction Borb of the external field – this direction is described 

by the directional cosines  1 cos , ,CZ Cx    2 cos , ,CZ Cy    3 cos , ,CZ Cz   and then we can 

write the components of the magnetic induction vector Borb and the magnetic dipole moment m in the 

connected coordinates frame Cxyz: 

 

   1 2 3, , ; , ,
T T

orb orbB k p q r   B m     (1.3) 

 

 The motion equations of the SC with one internal rotor-body (that is the GS) with its angular 

momentum Δ (fig.2) can be written in the vector form of dynamical equations [8-13]: 

 

;ctrl add internal

d
M

dt
     K ω K M M     (1.4) 

 

 γ γ ω         (1.5) 

 

where Mctrl, Madd – are the “controlling” and “additional/disturbing” torques, and internalM   is the value 

of the internal torque acting on the rotor from the side of the main body, and where the angular 

momentum of the system K in projections on axes of the coordinates frame Cxyz has the shape: 
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 , ,
T

bAp Bq C r K       (1.6) 

 

where ,b rA A A   ,b rB B A   b rC C C  ; , ,b b bA B C  are the axial inertia moments of the main GS 

body in the connected frame Cxyz; , ,r r rA A C  are the axial inertia moments of the dynamically 

symmetrical rotor in its own connected frame. Relatively inertia moments we assume that 

b b b r rA B C A C    . 

The well-known connections between the Euler angles and the directional cosines (fig.1) have 

the form: 

 

1 2 3sin sin ; sin cos ; cos             (1.7)  

 

 In this research we investigate the GS motion at the absence of the internal interaction between 

coaxial bodies (Minternal=0) and, therefore, everywhere below Δ=const. Let us also consider the case of 

weakly perturbed motion when the value of the magnetic torque is quite small in comparison with 

angular momentum that is described by the smallness of the dimensionless parameter: 

 

1orbkB

K
          (1.8) 

 

and, therefore, it is possible to consider the vector of the angular momentum as practically constant 

vector  constK . Moreover, let us study the case when the coincidence of the vector Borb and the 

angular momentum K is present (fig.1, fig.2), at least on the initial time-moment of the motion 

investigation, when the GS is placed into the appropriate segment OO’ of the orbit (or the cylindrical 

precession regime is realized): 

 

orb
orb

B

K
B K        (1.9) 

 

Then considering (1.3), (1.8) and (1.9), the magnetic torque and directional cosines will have the form: 

 

ctrl  M ω K      (1.10) 

 

 1 2 3; ; bAp K Bq K C r K          (1.11) 

 

Assume that besides the control magnetic torque (1.10), the GS can be at the same time affected 

by the small additional magnetic torque created by the additional constant magnetic dipole moment d 

of the GS, which corresponds, e.g., to the action of the second control contour stabilizing the GS attitude: 

 

 ; 0,0, ;
T

add orb zm  M d B d     (1.12) 
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Considering the condition (1.9), the torque (1.12) takes the form: 

 

add z M e K       (1.13) 

 

with the small parameter  

 

1z orbm B

K
         (1.14)  

 

As it was assumed above, we suppose that the external torque are small and do not practically change 

the vector of the angular momentum K. In this case, the motion equations (1.4) can be written in vector 

and scalar forms: 

 

 z

d

dt
     K ω K ω e K     (1.15) 

 

   

   

  

1

1

1 0

0

b

b

b

Ap C B qr q B q

Bq A C pr p A p

C r pq B A

 

 



         

         


     

 

    (1.16) 

 
The derived equations (1.16) represent the important special case of dynamical equations 

describing the SC attitude dynamics in the geomagnetic field at the implementation of the cylindrical 

precession regime. Moreover, these equations correspond to the closed form of differential equations 

and, therefore, the explicit exact solution can be found, that in its turn is the main aim of this work. So, 

in the next section, the indicated exact solution is obtaining, and as it will shown at the end of the next 

section, this solution differs from the previous results for the free gyrostat motion and some perturbed 

cases [9].     

 
 

2. The analytical solutions of the motion dynamical equations 

 

2.1. The general solutions 

 

Basing on the differential equations (1.16), which we consider as “exact” equations, it is possible 

to obtain the exact analytical solutions, following to the solution way [9]. From the combination of the 

dynamical equations (1.16) (the first equation (1.16) is multiplied by p, the second – by q, the third – 

by r, and the corresponding results are summarized) expression of the kinetic energy conservation 

follows: 

 

 bApp Bqq C rr B A pq          (1.17) 
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Considering the third equation (1.16) we can express the block from the right part of (1.17) 

 

 
 

 
1

1
b

d
pq A B C r

dt
  


     (1.18) 

 

and the formula (1.17) takes the form in complete differentials 

 

 
 

 2 2 21

2 1
b b

d d
Ap Bq C r C r

dt dt




   


   (1.19) 

 

The integration of last expression (1.19) gives the so-called first integral of the energy: 

 

 
 

2
2 2 2 2

2
1

b b

r

Ap Bq C r C r T
C






      


   (1.20) 

where 

 
2 0

0

2 2
2 2 2

0 0 0 2 0

1

const; ; ;
1

2 const; const
2

C r
T T Q Q EK E

K

K
T Ap Bq C r D

C T




 
      




      

 

 

The expression for the angular momentum conservation can be written with the help of equations 

combination (the first equation (1.16) is multiplied by Ap, the second – by Bq, the third – by (Cbr+Δ), 

and the corresponding results are summarized and integrated): 

 

 
22 2 2 2 2const 2bA p B q C r K DT          (1.21) 

 

where constant D links the values of the kinetic energy and the angular momentum. 

 After multiplying (1.20) by A and deducting (1.21) we obtain: 

 

 
 

     
2

22 2 2
2

1
b b b

r

E
B A B q A C r C r C r T A D

C 

 
             

 (1.22) 

 

 After multiplying (1.20) by B and deducting (1.21) we find: 

 

 
 

     
2

22 2 2
2

1
b b b

r

E
A B A p B C r C r C r T B D

C 

 
             

 (1.23) 

 

It is possible to extract the complete squares in the expressions (1.23), (1.22) and to write them in 

the form: 
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   
 

2
1

2
1

b b

b

E B
A A B p C B C r F

B C


   

      
  

   (1.24) 

   
 

2
1

2
1

b b

b

E A
B A B q C A C r H

A C


   

     
  

   (1.25) 

 

where 

 
   

 
   

2

2

2

2

2 1 2 ;
1 1

2 1 2
1 1

b

b r

b

b r

C E B E
F T B D B B

B C C

C E A E
H T A D A A

A C C

 

 

    
                    

    
                    

 (1.26) 

 

Then from (1.24) and (1.25) the expressions follow 

 

 
 

 

 
 

 
 

 

2
1

1 1

1

;

1 1
; ;

1

b b

b

b b

E B
C B C r F

B C
p

A A B

E A E B E
r V q r V q

A C B C



  






 

   
   

   


     
       

  

 (1.27) 

 

where 

 
 

    

 

  

2

; ;
b

b b b b b b

H B A B q B A CA B
V q

C A C B C A C B C A C
 

  
  

    
 

 

The third equation can be rewritten in the explicit factorized shape 

 

      1 bBq A C W q V q        (1.28) 

where 

 
 

 
 

   

2

;
1

b bC B C E F
W q V q

A A B A A B
 



 
     

   

 

 

With the help of the change of variables [9] 

 

 
 1

E
x V q  


   


      (1.29) 

 

the equation (1.28) takes the form with separated differentials 
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 
 

2 2

2 2

1

M dx
dt

ac
H G

x b x
a c


 

    
     

   

  (1.30) 

 

where constants and initial values have the following values 

 

 
 

 

 

 
2 ; ; ; ;

1

b b

b b

C B CB F E
M C G a C A C b c

A B A A B A A B
 




       

   
 (1.31) 

 

 
 

   

2

0

0
1

ini

b b

H B A B q E
x t x

C A C
 



 
    

 
   (1.32) 

 

After the second change of the variables the equation (1.30) takes the form 

 

 

 

 

1
2 2

2 4 2 2

1 2

2 1 1 ; ;
1

R x eR P z z
dt eM s s dz z

c c P x eaG



    
       

     

 (1.33) 

where  

   

2 2

1 2 1 2 4 3

1 2 3 4

; ; ; ; ; ;

; ; ; ;

R b d e P b d e d H a e G c c s s c s s

R R
s d e b s d e b s d e b s d e b

P P

           

           
 

 

One more change of variables is needed  1 2 1 2; min{ , }; max{ , };z cy c c c c c c k c c    , which 

allows to integrate the equation (1.33) as the elliptic integral: 

 

  
  

0 0
2 2 2

0

1 ;
1 1

y
dy

N t t I
y k y

      
 

    (1.34) 

where  

  

0
1

0
2 2 2

02 4

2 ; const
1 1

y
c R P dy

N eM I
aG s s y k y
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After the elliptic integral inversion we obtain the explicit solution [9] as the Jacobi elliptic sine  
 

     0 0sn 1 ,y t N t t I k           (1.35) 

 

The back substitutions give the exact explicit expressions for all dynamical parameters 
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  (1.36) 

 

As can we see, the exact solutions (1.36) of the equations (1.16) differ from the corresponding 

dependencies for free GS [9] in the part of the frequency of the elliptic function, and if ν=0 then solutions 

will be identical relative the previous works [9]. The graphics (Fig. 3) demonstrate the correctness of 

the analytical solutions (1.36), that corresponds to the coincidence of the analytical calculations (points) 

and the numerical integration results (lines).  
 

 

Fig.3 – The numerical integration (lines) and analytical (points) results (1.36) 

Ab=15, Bb=10, Cb=7, Ar=5, Cr=4 [kg·m2]; p0=0.60, q0=2.31, r0=1.86 [1/s];  

Δ=3, K=40 [kg·m2/s]; Q=10 [kg·m2/s2]; μ=-0.25 [1/s]; ν=0.30 

   

2.2. The heteroclinic solutions 

 

 Also it is important to indicate the partial case of the general solution (1.36), which corresponds 

to the heteroclinic separatrices-polhodes [11] – it realizes at the condition F=0. In this case the elliptic 

functions reduce to the hyperbolic form (when elliptic module k=1): 
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 (1.37) 

 

where 
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The correctness of the solutions (1.37) is checked by the coincidence with the corresponding numerical 

integration results (fig.4). These solutions can be very important at the research of the chaotic dynamics 

[e.g., 10-13, 17, 31]. 
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Fig.4 – The numerical integration (lines) and analytical (points) results (1.37) 

Ab=15, Bb=10, Cb=6, Ar=5, Cr=4 [kg·m2]; p0=3.5, q0=0, r0=5.4 [1/s];  

Δ=3, K=78.44 [kg·m2/s]; Q=10 [kg·m2/s2]; μ=-0.13 [1/s]; ν=0.30 

 

2.3. The additional partial case of the heteroclinic solutions 

 

In purposes of the simplest form of heteroclinic solution obtaining, let us consider the GS motion 

at the same main conditions that were described above in the subsection 2.2, but also at the fulfillment 

of some additional requirements. Assume that besides the action of small torques (1.10) and (1.13), the 

GS motion fulfills at the following combination of parameters: 

 

 1 0bC            (1.38) 

 

This additional condition can be implemented with the help of the control system of magnetic actuators, 

and/or by the change of the value of the rotor internal angular momentum Δ. At the fulfillment of the 

requirement (1.38) the equations (1.16) take the shape: 
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     (1.39) 

where  1    . 

 The equations (1.39) will have the partial solution in the following qualitative form: 

 

      0
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r
p t p t q t t r t

t


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
      (1.40) 

 

where initial values p0 and r0 satisfy the condition (1.24) of the heteroclinic separatrices-polhodes 

realization (at F=0) and {ρ, λ} are unknown constant parameters. The solution (1.40) represents the 

partial case of the heteroclinic solution (1.37), and it has the simplest shape described by the simplest 
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hyperbolic functions. To obtain the correct final form of this solutions we need to substitute formulas 

(1.40) directly into the equations (1.39). Using properties of the symmetry of the derivations of 

hyperbolic functions: 

 0 02 2 2

sh 1 sh
; ;

ch ch ch

t t
p p q r r

t t t

 
   

  
       

 

the substitution gives the following algebraic nonlinear equations: 
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From the system (1.41) it is possible to find the expressions: 

 

 

 

  2 2 2 2

0 0;
b b

b b

C A A C A B A
p p

C B B BC
 

  
 


    (1.42) 

 

Taking into account (1.38), the condition (1.24) of the heteroclinic separatrices-polhodes realization 

takes the form (that corresponds to F=0): 
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The last condition (1.43) allows to write four cases (i∙j, i=1..2, j=1..2) of the initial conditions 

combination: 
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So, basing on the initial values (1.44) and parameters (1.42), we have the fully defined simplest 

heteroclinic solution (1.40) at the predefined (arbitrary) value p0. 

 

3. The canonical form of the dynamical model in the Serret-Andoyer-Deprit variables 

 

Let us involve the very important and useful form of the dynamical model, which is based on 

the Hamiltonian mechanics, and can be applied to the investigation of the nonlinear phenomena of the 

dynamics, including homo/heteroclinic chaos initializing. As the canonical variables in this work the 

well-known [3-6] canonical pares of the Serret-Andoyer-Deprit variables ({φ3, I3},{φ2, I2},{l, L}) are 

used: 
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In the considering case (when K↑↑CZ) the canonical variables reduce to two pares ({φ2, I2},{l, L}) that 

depicted at the fig.2, and the correspondences with the Euler angles are actual: 
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The angular momentum components are linked with the canonical momentums as follows: 
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As it is considered in previous works [e.g., 11-13], the Hamiltonian of the GS system in the 

Serret-Andoyer–Deprit variables has the form: 
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where T  is the kinetic energy, P is the potential energy, and 1  is the part of the Hamiltonian which 

describes possible small (proportional to the small parameter ε) perturbations acting on the system. To 

write the expressions for the potential energy it is needed to consider the magnitude of the magnetic 

torque (1.1) with integrating it by the corresponding positional angle  , orb  m B : 
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Then the potential energy (2.5) in the Serret-Andoyer-Deprit variables can be obtained with the help of 

connections (2.2) 
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In the considering case, taking in mind shapes of the magnetic dipole components and parameters (1.3)

-(1.14), the potential energy can be written in the form: 
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Let us assume the presence of small polyharmonic synchronous oscillations in the both considered 

dynamical factors (described by the parameters ν and μ) of the magnetic dipole value, which expressed 

in the corresponding parameters change 
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where the small multipliers , 1e e    and the polyharmonic perturbation with the basic frequency ωp 

take place 
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Then the following perturbed part of the Hamiltonian can be written 
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where the small parameter is introduced as e  . 

As can we see from the Hamiltonian, only the pare {l, L} corresponds to the positional 

coordinates, and others Serret-Andoyer-Deprit variables are cyclic and do not affect the dynamics in 

the considering case. Then only two canonical equations are important for our consideration: 
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   (2.11) 

 

The equations (2.11) fully describe the system’s dynamics; the corresponding phase portraits 

(PP) of the generating system (without the perturbations, i.e. ε=0) in the space {0≤l≤2π; -K≤L≤K} are 

presented at the fig.5.  

Notwithstanding that the smallness of the parameters ν and μ is claimed, it is very important to 

observe the whole possible bifurcation picture in the system, allowing the broad interval of ν and μ 

values change. Then from the fig.5 the bifurcation scheme follows at rising the value of the ν-parameter 

(on the interval [-1,1]): at the frames from (a): ν=-1 to (e): ν=0.4 the first PP-type and its serial 

deformation are depicted; beginning from the frame (j): ν=0.54 and up to the frame (o): ν=0.9 the second 

PP-type is shown with its sequential change; at the frame (f): ν=0.45 and up to (i): ν=0.535 we see the 

transitional PP-type takes place; the frame (p): ν=1.0 corresponds to the degeneration of the phase 

portrait. So, the demonstrated bifurcation serial reconstruction at the variation of the ν-parameter can 

be quite useful in the framework of the GS attitude control and/or dynamical regimes switching.  
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(a) ν=-1      (b) ν=-0.5 

  

   
(c) ν=0        (d) ν=0.3 

 

   
(e) ν=0.4      (f) ν=0.45 
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(g) ν=0.5      (h) ν=0.53 

 

   
(i) ν=0.535       (j) ν=0.54 

 

    
(k) ν=0.55      (l) ν=0.57 
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(m) ν=0.6       (n) ν=0.8 

 

   
(o) ν=0.9       (p) ν=1.0 

 
Fig.5 – The phase portraits {l, L} of the GS system at the change of the ν-parameter 

A=15, B=10, Cb=6 [kg·m2]; Δ=3, K=78 [kg·m2/s]; μ=0.3 [1/s]; ε=0 

 

 

In the continuation of the bifurcation scheme investigating it is needed to present the PP 

deformations at rising the value of the μ-parameter (fig.6). As can we see (fig.6), the PP is gradually 

moving up (frame b), changes the type (frame c), and degrades at following μ-parameter rising (frame 

d). Also it is important to note that at decreasing the μ-parameter (to negative values) the similar PP-

deformation takes place, but the picture is moving down. Such scheme of the PP bifurcation is also 

typical for the case of the gyrostatic angular momentum Δ variation [e.g. 8, 10]. 

So, the fundamental bifurcation picture basing on the considered schemes (fig.5, fig.6) can be 

applied to the GS attitude control and dynamical regimes changing. Here, however, we have to note that 

variation intervals for the “magnetic” parameters (ν and μ) should be selected in view of requirements 

of the smallness of magnetic perturbations, which defines the applicability of the main equations (2.11) 

and (1.16) itself. 
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(a) μ=0.0      (b) μ=3.0 

 

   
(c) μ=5.3      (d) μ=10 

Fig.6 – The phase portraits {l, L} of the GS systems at the change of the μ-parameter 

A=15, B=10, Cb=6 [kg·m2]; Δ=3, K=78 [kg·m2/s]; ν=0; ε=0 

 

 

4. The perturbed dynamics and the heteroclinic chaos initiation  

 

Let us fulfill the short modelling of the GS dynamics at the presence of the perturbations defined 

by the Hamiltonian (2.4) (with the potential energy (2.7)) and its perturbed part (2.10). Firstly, it is easy 

to evaluate the well-known Melnikov function, which can analytically show the possibility of the 

chaotic dynamics initiation near homo/heteroclinic regions. In the considering case the perturbed part 

of the Hamiltonian depends only on the pare of {l, L} variables and t, and, therefore the classical 

Melnikov function can be applied [30]: 

 

 
    0

1 1
0

, ,

0 0

l t L t t t

M t dt
l L L l






   
      
    (2.12) 
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where the subscription     0, ,l t L t t t  indicates that the generating heteroclinic solutions must be 

substituted into the integral structure. Taking into account the correspondences (2.3) and heteroclinic 

solutions (1.37) (or (1.40)), the Melnikov function is written in the shape: 

 

   0 0
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2 ( ) ( ) ( ) ;M t AB p t q t t g t t dt
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 
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   

 
 

  
2 2

22

2

( ) ( );

1 2 1 const;

1 ( ) ( )
( ) ( ) 2 2 3

( )

b

b

b b

t t

e e e
C

Ap t Bq t
t C r t e

C I C r t

  



    

 



   


  
             

 


        
     

  (2.14) 

 

Now it is important to analyze the internal structure of the integral (2.13). Having regard to the solutions 

(1.37) (or (1.40)), we can conclude that functions Λ(t) and Ω(t) are the even functions, and the block 

( ) ( )p t q t – is the odd-function, and, therefore, the block ( ) ( ) ( )p t q t t  is also the odd function of t. With 

the help of the symmetry properties of even/odd functions after expanding trigonometric functions and 

the final integration, the Melnikov function obtains the polyharmonic explicit form depended only on 

the parameter t0: 

 

        0 0 0

0

1 1
2 cos sin

N
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s n p n p
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where  

       ( ) ( ) ( )cos 0; ( ) ( ) ( )sin const 0
n n

c p s p nJ p t q t t n t dt J p t q t t n t dt 
 

 

         

 

From the expression (2.15) the fact follows, that the Melnikov function has the infinite set of 

simple zero-roots and then the perturbed manifolds of the heteroclinic phase-trajectories will be 

mutually intersecting each other, and will generate the corresponding heteroclinic nets in the phase 

space, that in its turn inevitably initiates the dynamical heteroclinic chaos.  

 To confirm the analytically demonstrated fact of the chaos initiation the sections of the perturbed 

phase space (the Poincaré sections) can be plotted (fig.7). These Poincaré sections were numerically 

obtained basing on the simple “stroboscopic condition”, when the points of the phase trajectories are 

draw on the common picture at discrete time-moments 2j pt j   multiple of the basic period of the 

polyharmonic part of perturbation (2.9). All of the Poincaré sections (fig.7) contain the so-called chaotic 

layers and a great number of new secondary heteroclinic bundles.   
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(a) ν=0.3; μ =1.0; ωp=10; eν=0.3; eμ=0.3   (b) ν=0.45; μ =0.3; ωp=5; eν=0.1; eμ=0.3 

 

    
(c) ν=0.45; μ =1.0; ωp=6; eν=0.5; eμ=0.3   (d) ν=0.57; μ =0.3; ωp=3; eν=0.1; eμ=0.3 

 

    
(e) ν=2/3; μ =0.3; ωp=5; eν=0.1; eμ=0.29   (f) ν=0.9; μ =0.3; ωp=5; eν=0.1; eμ=0.3 

 

Fig.7 – The Poincaré sections of the phase space {l, L} of the perturbed system  

A=15, B=10, Cb=6 [kg·m2]; Δ=3, K=78 [kg·m2/s]; s1=1, sj=cj=0 (j≠1)  
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From the form of the Melnikov function (2.13) the possibility of its zero-amplitude follows in some 

cases. As the trivial example, the zero-amplitude of the Melnikov function appears at the equality of the 

inertia moments (A=B) when the degeneration of the phase portrait occurs, and the dynamical chaos 

vanishes together with the heteroclinic separatrices.  

The second and more interesting example of the Melnikov function with the zero-amplitude can 

be presented in the case when the condition fulfills: 

 

( ) 0;

0

t 

 

       (2.16) 

 

The condition (2.16) fulfills, e.g., at the following parametrical combination: 

 

2 3;
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     (2.17) 

 

In the case (2.17) the integrand in (2.13) becomes equal to zero at all non-zero parameters of the 

perturbation and at the normal (non-degenerated) form of the phase space (as opposed to the first 

example with A=B). Then the Melnikov function (2.13) has not roots (by t0). This fact, basing on the 

Melnikov formalism, could be considered as the condition of the elimination of the chaos, but we regret 

to note, that this chaos-avoidance-condition (2.17) does not work, and we see as before the chaotic layer 

near the area of the unperturbed separatrices at the Poincaré map (fig.7-e). So, we must conclude that 

the simple conditions of the chaos elimination in the considered system cannot be obtained without the 

additional dissipative torques, which separate the split manifolds of the heteroclinic trajectories with 

non-zero distance between them.  

The Melnikov formalism (as the method developed for the analysis of homoclinic trajectories 

splitting [30]) is guaranteed to generate the correct anti-chaos conditions only in homoclinic cases and 

at the detection of non-zero distances between the split manifolds. Some critical aspects relative the 

Melnikov formalism are indicated in recent works [13, 31], where also the remark is noted, that applying 

the Melnikov formalism to detecting the “edge of chaos” in heteroclnic cases is far from perfect method 

[31].  

Following to notes [13], it is worth to remind the well-known fact, that at the construction of the 

Melnikov’s formalism [30] the dynamical conditions for the homo/heteroclinic trajectories on infinite 

limits t   are very important. In the homoclinic cases these conditions are equal: homoclinic 

trajectories start and finish in the single original homoclinic point, so the “distances” between the 

unperturbed original homoclinic point and perturbed one is the same at t   and at t   . But for 

heteroclinic cases these dynamical conditions on infinite limits can be differ so far as the heteroclinic 

trajectories start (at t   ) in one point and finish (at t   ) in the another point; and, moreover, 

distances between their unperturbed and corresponding perturbed positions are not obliged to be equal. 

So, for the heteroclinic cases the guaranteed fulfillment of the Melnikov’s formalism is possible at the 

additional conditions of the equality of distances between unperturbed and perturbed positions of the 

two different heteroclinic points (e.g. at the “symmetry” of deformations of the split manifolds of 
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heteroclinic trajectory, and of the whole phase portrait). In the general case for heteroclinic trajectories 

this additional conditions are not fulfilled a priori. 

In any case, taking into account the indicated comments, the Melnikov method can be effectively 

used in tasks of the fundamental detection of the chaos initiation in systems, and also can be applied to 

obtain the correct conditions of the chaos avoidance.  

 

Conclusion 

 

In the paper the attitude dynamics of the gyrostat-satellite was considered under control by the 

magnetic actuators in the case of the omega-maneuver implementation and at the presence of additional 

constant longitudinal component of the magnetic dipole moment of GS. The general and heteroclinic 

analytical solutions were obtained for the angular motion in conditions of relatively small values of the 

created magnetic torque (which substantially do not change the direction of the angular momentum 

vector) and at the coincidence of the external magnetic induction vector and the vector of the angular 

momentum in the initial time-moment. The phase portrait of the system and its bifurcations were 

presented. The perturbed dynamics of the GS was considered at the presence of small polyharmonic 

perturbations in the magnetic dipole moment of the GS was investigated with the help of the Melnikov 

method and Poincaré sections. 

It is quite possible to characterize the studied regimes of the gyrostat angular motion as 

continuation of the classical tasks of rigid bodies dynamics, especially, the tasks of the heavy tops 

motion (in Euler’s and Lagrange’s cases with gyrostatic generalizations), when the restoring/tilting 

torques act on the gyrostat. 
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